
Java:
Learning to Program with Robots

Chapter 11: Building Quality Software

C
ha

pt
er

 O
bj

ec
tiv

es

After studying this chapter, you should be able to:
• Identify characteristics of quality software, both from the users’

and programmers’ perspectives
• Follow a development process that promotes quality as you

develop your programs
• Avoid common pitfalls in designing object-oriented programs
• Include defensive programming measures to make errors more

likely to expose themselves so they can be fixed
• Explain characteristics of quality user interfaces and describe an

iterative methodology for developing them

11
.2

:
U

si
ng

 a
 D

ev
el

op
m

en
t E

nv
iro

nm
en

t
Requirements:
What the
program must
do.
Architecture:
A description of
the most
important
classes and how
they relate to
each other.
Scenario: A
specific task a
user may want
to perform with
the program.

Define the Requirements

Describe the desired system

Design the Architecture

Identify classes and methods
C reate CRC cards
L ist scenarios
Walk through scenarios
Develop a class d iagram

Choose a Set of Scenarios

Evaluate with Users

Refine the Design

Refine requirements
Add new scenarios
Walk through new scenarios

Implement the Scenarios

Choose one scenario
Write tests for that scenario
Write code to pass tests

Refactor

C
as

e
St

ud
y

1:
 D

ef
in

in
g

R
eq

ui
re

m
en

ts
 (1

/2
)

A program is required to help with selling tickets in a concert hall. The
program must show a list of upcoming concerts and a list of existing
patrons. New concerts may be added to the list of concerts. Concerts
may also be deleted. Similarly, patrons may be added to or deleted
from the list of patrons.
When a particular concert is identified, the program must display the
tickets that are still available for that concert. The user should then be
able to select a patron from the patron list and one or more tickets to
sell to the patron. A patron’s past ticket purchases are kept for
marketing purposes.
Tickets are divided into three groups for pricing. Gold is the most
expensive, followed by Silver, and finally Bronze. When a concert is
entered into the system, the prices for Gold, Silver, and Bronze tickets
are specified. Tickets are labeled with numbers for rows (1…15) and
letters for seats (A…T).
Information must be saved in a file so the program can be stopped and
restarted.
A possible user interface is sketched on the next slide.

C
as

e
St

ud
y

1:
 D

ef
in

in
g

R
eq

ui
re

m
en

ts
 (2

/2
)

C
as

e
St

ud
y

1:
 D

es
ig

ni
ng

 th
e

A
rc

hi
te

ct
ur

e Designing the architecture consists of five tasks:
• Identify the most important classes and methods for the program

using an analysis of the nouns and verbs in the requirements.
• Summarize the responsibilities and collaborators for each class on

index cards.
• List scenarios in which the software will be used.
• Walk through the scenarios using the index cards to further develop

the responsibilities and collaborators.
• Develop a class diagram based on the responsibilities and

collaborators listed on the index cards.

The result is a class diagram used to guide implementation.

C
S1

:
Id

en
tif

y
C

la
ss

es
 a

nd
 M

et
ho

ds

The program sells tickets.
The program shows a list of upcoming concerts.
The program shows a list of existing patrons.
The program adds new concerts (to the list of concerts).
The program adds patrons (to the list of patrons).
The (user, patron?) identifies a concert.
The program displays available tickets (for an identified concert).
The user selects a patron from the patron list.
The user selects one or more tickets.
A patron has past ticket purchases (kept for marketing purposes).
Tickets have a price group (Gold, Silver, Bronze).
Concerts have prices for Gold, Silver, and Bronze tickets.
Tickets have a row number (1..15).
Tickets have a seat letter (A..T).
The program saves information to a file.

C
S

1:
 C

re
at

e
C

R
C

 C
ar

ds

CRC (Class-Responsibilities-Collaborators) Cards
• are usually 4”x6” index cards
• summarize one class’s responsibilities and collaborators
• are an inexpensive (in materials and time to develop) precursor to

the class diagram

ConcertHall
Responsibilities Collaborators
sell tickets ConcertList
add a concert to list of concerts PatronList

add a patron to list of patrons

save information to a file

11
.2

.3
: I

te
ra

tiv
e

D
ev

el
op

m
en

t
Define the Requirements

Describe the desired system

Design the Architecture

Identify classes and methods
C reate CRC cards
L ist scenarios
Walk through scenarios
Develop a class d iagram

Choose a Set of Scenarios

Evaluate with Users

Refine the Design

Refine requirements
Add new scenarios
Walk through new scenarios

Implement the Scenarios

Choose one scenario
Write tests for that scenario
Write code to pass tests

Refactor

11
.3

.1
: R

ul
es

 o
f T

hu
m

b
fo

r Q
ua

lit
y

C
od

e • Document classes and methods.
• Avoid nested loops.
• Keep methods short.
• Make helper methods private.
• Put duplicated code in a helper method.
• Make instance variables private.
• Write powerful constructors.
• Keep data and processing together.
• Write immutable classes.
• Delegate work to helper classes.

11
.3

.2
:

M
an

ag
in

g
C

om
pl

ex
ity

 (1
/2

)
Many of these rules of thumb (heuristics) relate to four features that
have been long recognized as crucial to quality code:
• Encapsulation: Grouping data and related services into a class.
• Cohesion: The extent to which each class models a single, well-

defined abstraction and each method implements a single, well-
defined task.

• Information Hiding: Hiding and protecting the details of a class’s
operation from others.

• Coupling: The extent to which interactions and dependencies
between classes are minimized.

Instance variable detail

Method detail

Interaction

11
.3

.2
:

M
an

ag
in

g
C

om
pl

ex
ity

 (2
/2

)

11
.3

.2
:

En
ca

ps
ul

at
io

n

11
.3

.2
:

C
oh

es
io

n

11
.3

.2
:

In
fo

rm
at

io
n

H
id

in
g

11
.3

.2
:

C
ou

pl
in

g

11
.4

:
Pr

og
ra

m
m

in
g

D
ef

en
si

ve
ly

Exceptions
• Immediately alert programmers to things that have gone wrong,

including helpful information for debugging the program.

Design by Contract
• Write down exactly what a method expects of its caller and what it

will do in return (a contract for the method).

Assertions
• Specify what should be true at critical points in your code. To the

extent that it’s possible, check that the assertions actually are true.
If they aren’t, throw an exception.

C
as

e
St

ud
y

2:
 R

ef
ac

to
rin

g
a

Pr
og

ra
m

The Pharmacy program is poorly written and ignores many of the rules
of thumb discussed earlier. As a result, its encapsulation, cohesion,
information hiding, and coupling are all very poor.
Refactor the program. Refactoring does not change the program’s
functionality. It changes its internal structure so that it has higher
quality from a programmer’s perspective.

11
.5

.1
:

Ite
ra

tiv
e

U
se

r I
nt

er
fa

ce
 D

es
ig

n
(1

/2
)

Design

Prototyping

User Testing
and Evaluation

11
.5

.1
:

Ite
ra

tiv
e

U
se

r I
nt

er
fa

ce
 D

es
ig

n
(2

/2
)

The five E’s of User Interface Evaluation:
• Effective: The completeness and accuracy with which users

achieve their goals.
• Efficient: The speed and accuracy with which users can complete

their tasks.
• Engaging: The degree to which the tone and style of the interface

makes the product pleasant or satisfying to use.
• Error Tolerant: How well the design prevents errors or helps

with recovery from those that do occur.
• Easy to Learn: How well the product supports both initial

orientation and deepening understanding of its capabilities.

11
.5

.2
:

U
se

r I
nt

er
fa

ce
 D

es
ig

n
Pr

in
ci

pl
es

Well-designed user interfaces are:

• Controlled by the user: Give the user as much control over the
process as is consistent with the user’s knowledge and skill level.

• Responsive: Give the users constant feedback, and give it fast
enough so the user can work at full speed without waiting for the
computer.

• Understandable: Some of the techniques for understandable
interfaces include consistency, good visual structure, and
information recognition rather than recall.

• Forgiving: Prevent as many mistakes as possible; make it easy to
correct the mistakes that do happen.

C
on

ce
pt

 M
ap

software
quality

can be evaluated from

a programmer's
perspective of

quality

understandab le
programs

includes

testab le
programs

includes

maintainable
programs

includes
a user's perspective

can be evaluated from

an iterative
development

 process
is

en
ha

nc
ed

by
 u

sin
g

requirementsdefines

the architecture
designs

implements and
evaluates scenarios

repeatedly

encapsulation

high cohesion

information hid ing
weak coupling

is improved by

proactively
responding to

exceptions

is improved by

important
classes and
methods

defines
nouns and

verbs help discover

walk
throughs

refine

CRC cards

use classes,
responsib ilities

and collaboratorsrecord

Su
m

m
ar

y We have learned:
• that software “quality” involves understandability, testability, and

maintainability.
• that a development process featuring iteration helps lead to quality

software.
• how to use the specification’s nouns and verbs to design a program.
• how to create CRC cards and use them in a walk-through.
• rules of thumb that provide guidance in implementing quality

software.
• that strong encapsulation, high cohesion, information hiding, and

weak coupling help manage software complexity.
• how to use exceptions, assertions, and “design by contract.”
• that iteration, prototyping, and evaluation have strong roles in

developing quality user interfaces.

